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GENERALIZED DIFFUSION THEORY OF MULTITEMPERATURE
HOMOGENEOUS MIXTURES

Nguyen Van Dien UDC 532.529.5

A generalized Giffusion theory is constructed for motion of hombgeneous mixtures consisting
of components at different temperatures.

The theory of motion of mutually penetrable media, e.g., the motion of various materials and phases
with consideration of phase transitions, chemical reactions, heat transfer, and radiation; the motion of liquids
and gases with various particles; and the motion of liquids and gases in soils, is important in solutionof numer-
ous practical problems, in particular, those related to chemical production, hydroenergetics, hydromeliora-
tion, and the development of the petroleum and gas industry.

There exist various approaches to the problem of study of the complex motion and varied processes in
interpenetrating media. One of these is diffusion theory.

We construct below a generalized diffusion theory of motion of multitemperature homogeneous mixtures,
In contrast to classical diffusion theory [1-4] here we introduce a certain general characteristic velocity of the
mixture as a whole, and diffusion flows are defined relative to this velocity, Using general integral laws of the
mechanics of mixtures, a new system of equations is obtained for determination of the unknown values, gener-
alizing Prigogine's theorem [2, 3]. This system permits transforming from one characteristic velocity to
another in the general case of motion of different-temperature homogeneous mixtures, It is shown that with
consideration of the contribution of diffusion flows to the energy of the total mixture the equations for deter-
mination of the diffusion flows are differential, and not algebraic, equations. The equations for change in
component concentration are of the hyperbolic type, not parabolic, as in classical theory, i.e., generalized
diffusion laws are obtained, as were proposed in [5, 6] in analogy to the rheology of viscoelastic media,

1. Basic Integral Laws of the Mechanics of Mixtures. We will consider the motion of mixtures consist-
ing of n components, We will assume that all these components fill one and the same volume, occupied by the
mixture. Let pk, uy be the density and velocity of the k~th component. It is known that in the theory of homo-
geneous mixtures, together with the density Pk it is necessary to consider other quantities characterizing the
inertness of each component. These quantities are M, the molar mass; Vi, the molar partial volume; and
Nk, the number of moles of the k-th component per unit volume of mixture,

Let ug be some characteristic velocity of the mixture. We will assume that u; may be expressed as a
linear combination of uk with the aid of some system of normalizing weights gy, i.e.,

U, = i iy Eah =1, (1.1)

b
T
T

where ak may depend only on pk, Mk, Nk and V.
The motion of the k-th component relative to an observer | movmg with a veiocxty Uy is determined with
the aid of a generalized diffusion current g, equal fo

n

Bo=mle—u) ¥ 2-df=0. 1.2)
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In order to obtain equations for the determination of u,, J‘f( and other mixture parameters it is necessary to
postulate laws for the mechanics of continuous media, In integral form these appear as -

fEde | (;‘pk dv+§ %‘kuhds 0;

-._g—f— | 2 pupdV = S%(E Pulty )dV~§- 8 n (2 pkuhuk) 5 2‘ P:szdv +. yﬂ - PdS;

k=1

d J‘ ™y
4 (ruXontn) dV = f X ¥ j r % (nP)dS;
di ) g J ;
d N /1 a “y o1 | -3
CNY (Lo ":-dV_;:j‘ ( QL S ).:dV' .
” g pJ (2 Pkuk—i“PS) ) a ;'?!‘Pkuk + pg +

+Sn N (_;_ kuh+Pka)ude Spfz*dv + j‘ E"‘(‘théué)“iv“z‘“

§ =L vkl

”gcé'qu% 5 (Pu)dS+5 (ZRkk )

In Eq. (1.3) n is the unit vector along the external normal of the surfdace S; AV and dS are the elements of
the volume V and the surrounding surface S; fi, the density of the external force acting on the k-th continuum;
P, the stress tensor; ri, the radius of the center of mass of the k—th contmuum located thhm the element dV;
r, the radius of the center of mass of the mixture as a whole. (at.a. glven moment of t1me t 1t is assumed that .
rE = 1); € is the internal energy of a.unit mass of mixture; Rf( are second range tensors defmmg additional . _
surface interactions in the mxxture, h*, the, mtensu:y of a heat source; q, the thermal flux; the. operatmn B/Bt ‘
{. . . ) indicates partial d:fferentxatwn with respect to time; V, the demvatwe along the coordinate;. - mdxcates
the scalar product; x .indicates the cross product.of adjacent indices of the tensor quantities. Moreover , it 1s
assumed in Eq. (1.3) that the stress tensor. P operates only on the general oharacteristxc velocity of the mxx-—
ture ug,, while the tensors Rll:: operate on the relative velocities of the contmua

2. Basic Differential Equatiors of Mixture Motion. We will employ the defining equations (1.1) and (1.2)
to transform Eq. (1.3) to the following differential form:

apk . '.l_.‘ ' .
+V(pkua)--v Tty S m=0;
k== .

d N e N X
e - (P8, =— S vedrs Nl=p pf = L“pkfk;
C d@a, N Do JZJ‘,;‘\)_ Ao
b —a *pf—_‘V'P"f“‘L ( v )i P=0 2.1)

Pr

In Eq. (2.1) my indicates the change in mass of the k-th continuum due to physicochemical transformations;

, the ant;symmetnc portxon of the stress tensor, the operation (. .) denotes convolution over all two in-
dmes d a/dt, the complete time derivative; D(a /Dt a derivative defining the change in time with respect to
a generalized Lagrangian coordinate system movmg and deformmg with 2 velocity ug {7], these derivatives
having the form
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— () = -Et_(.~-)+(u,,-v)(--~); 2.2)

a)
o O o () ) e () (90t

Moreover, in Eq. (2.1) the new quantities Qﬁ were introduced, defined in the following manner:

DO, ( . B ) (2.3)
Di +Qtv (R o .
It is easy to demonstrate that if we assume
n
2 % Ri=o, (2.4)
bl r
then Q‘f{ must satisfy the relationship
n n a ’ .
: @y [ an e e « d9 [
Q —_ V. ("_"—Rh) -——-J}; L . 2.5
Z Pr l Pn Pr dt Pr (2.5)

We note that Egs. (2.1) and (2.3) are exact equations for determination of the change in continuum den~
gity, characteristic velocity u,, internal energy e, and diffusion flows J!f{ They coincide with the well-known
equations of classical diffusion theory [1-2] if we choose as the characteristic general velocity the mean mass
velocity, and the terms D(a)Jak/Dt, VJﬁJak/pk and R§ can be neglected. Together with specifying the concrete
form of the internal energy and the dissipation function, these equations can serve as a basis for description
of the motion of various mutually penetrating media, not only homogeneous and heterogeneous mixtures, but
also liquids and gases in soil and rock.

In the theory of homogeneous mixtures one of the following characteristic velocities is often employed:
mean mass, molar, volume, or the velocity of one of the components. The advantages of each of these were
discussed in [3, 10]. To describe the general motion of heterogeneous mixtures the mean mass, or mean
volume velocity, or simply the velocity of the carrier phase is used. The theory of drift flow, based on use
of the mean volume velocity of the mixture, is often found in studies of many {ypes of flows in gas—liquid sys-
tems, and also in the flows of suspensions of solid particles in liquids of the fluidized type [8]. Use of the
mean volume velocity is still more convenient if the true densities of the phases are constant, since in this
case its divergence is equal to zero, while at the same time the other characteristic velocities do not con-
form to this important mathematical limitation. Moreover, with the aid of the mean volume velocity the coef-
ficient of effective mixture viscosity may be calculated from the phase viscosity coefficients and the volume
concentration of the discrete phases [9].

We note that the differential equations (2.3) for determination of the diffusion flows Jﬁ contain not only the
classical Fick diffusion law, the laws of thermodiffusion, barodiffusion, sedimentation, and Darcy filtration,
but also their generalizations with time relaxation, as proposed in [5, 6] in analogy to the rheology of visco-
elastic media, Moreover, the presence of the terms D(a)Jak/Dt in the equations for the determination of u,
permit a description of other time effects (creep, stress relaxation) in interpenetrating media,

3. Generalized Diffusion Theory of Different~Temperature Homogeneous Mixtures., Let there be a homo-
geneous mixture consisting of n components with differing temperatures Ty, For simplicity the absence of
chemical reactions will be assumed. We will assume that € is the internal energy of a unit mass of mixture,

e==g(p, Cn Su) Crn=Pw/0, (3.1)
where sk is the entropy of the k-th component per unit mass of mixture,
Agide from € we introduce other thermodynamic functions of the multitemperature mixture: F, free

energy; h, enthalpy; ¥, thermodynamic potential, These are related to each other as follows [1]:

Feg— I?;lTkSk =Fp, cp Th)s »
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h=e+ 2 =n(p, cn s);
P

T=8-—'2 kS;;—i—— =¥{p, ¢z, Th)

R=1

(3.2)

In Eq. {3.2) p is the pressure of the mixture; p, total density; ckx, mass concentration of the k-th compo-
nent. From Eq, (3.2) it is simple to obtain

pmp B @ OF _OF _ on _ 0¥
ap ap ’ * aﬂk 6ck f‘)c,, 6ch !
- ' " 8.3)
e _ on oF ¥ 1 _ o _ o¥
Th —1 = ; sk I e —— I e . — TR ee——— =T ———

ds;, sy, Ty ~oT, " p  dp ap
where py is the chemical potential of the k-th component,

We assume that for multitemperature homogeneous mixtures all the thermddynamic functions are homo-
geneous in the first power of the functions in mass, i,e., they may be represented in the form

¥ = 2_“ Cage (3.4)

It is simple to demonstrate that from Egs. (3.2)-(3.4) there follow a generalized Gibbs thermodynamic
equation and additional relationships:

S ! X
< = — yp— SpvThs
‘}E{ 2Via o \v4 ; A
. . = (3.5)
\Y. =0 O _ PS = C O
fzdl ' (VMR)o, 7, ap Uy Sp 1 ar,

where vk is the specific partial volume of the k-th component,

With consideration of Eq. (3.5) from the last equation of (2.1) we obtain

pEThé—)Si = ph*—vy g+ v {2 I (-—— 2&1&)}%—
hl

h=1 i=1

d(“)ua;‘ Qah _
+ZP¢;V Jk+21ﬁ {f pr _“Pk }

— 2 Ji - (TkVSk -+ ShVTk) 4 Ter ey T 2 R:--

=] (=]

(3.6)

In Eq. (3.6) T4 is the viscous stress tensor and ea is the deformatlon velocity tensor. These tensors
have the form

T,=pl+P; e,= ;— v, + (yu)" 1. 3.7

Equation (3.6) still does not permit a description of the second law of the thermodynamics of irreversible
processes, since it is formulated only for the entropy of the mixture as a whole. To achieve this description
we will assume that from Eq. (3.6) we may postulate the following equations for change in enfropy sk of each
component:

d()sk By 1 1 \ b .
JEus, = - : 2 } + e o
P +2 Ve p"T T Tkv{ ( - ”) 7, VT

i==1
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d®y Q. } N . T 1 I X (3.8)
Jedp - Lt Bl N g —— RS- —_. :
Tkh{ik .‘_-‘ika+TthPh+Tk
In Eq. (3.8) the new quantities: h’i‘(‘ a heat source; qi, the thermal flux toward the k-th component; and X},
an additional term appearing as a result of division of general equatmn(3 6), were introduced. These quanti-
ties must satisfy the following conditions:

h=l

? pkh = ph zqh - q’ Zxk ='Ta’ ‘ea.b (3'9)
k=1

After summation of Eq. (3.8) we obtain an equation for the change in entropy of the mixture s. It has the
form

dos & \ p h, o
P +2J2-VS= s S‘ = —"J“—(l‘k*”]“’ (3.10)
dt T,
. k=1 h=l
where ¢ is an expression for the entropy production of the mixture as a whole, satisfying the inequality

Ta—Th N ( hy
<L o= X — —J —F i+
24 YT, ;[q" S )

z n-—1 n ’ (3.11)
N e vTs NI Q apn Qs I 1 a
+LJiTk3k]'—-4—2‘Jh-[d“—(~—~-—)}+ -r,,..e+“ R: .- LI
i=1 TZ R==1 * pth ankan Tn @ ﬁ Th k v O
where
’ n—1
[ O _ap;
4o = fa . GPafn )__ Y ( hi o G )(VP') r,
B ( Tk : anpth - Ti anPkT "
{3.12)

._i[___ . 4 "2 (_61_; 4 G0; )W]VP*‘( 1 apn :) d®y,

ankan - Ti anpth Tk ankan dat
In Eqgs. (3.10)~(3.12) the quantity F denotes free energy of the mixture; hy, enthalpy; and vk, the specific par-
tial volume of the k-th component.

Inequality (3.11) represents a generalization of Prigogine's theorem {2, 3] for the general case of motion
of homogeneous multitemperature mixtures, It will serve as a basis for the construction of definitive rela-
tionships.

~ The linear definitive relationships satisfying Curie's principle and Onsager's reciprocity relationships
[2] have the form

n—1

Ty —T; 1 N\ AY
Ko Mg AR W R (v )

+ 2 J?Thsh:' =

s 4=l

S S fo (G- ),
Ji=— é"‘}u‘ Vy:i + Eagi{d:.’— (“QZ‘M&E&\}’

o:T; anp;Tr J
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Moreover, conditions (1.2) and (2 4) impose the following additional limitations on the phenomenological
coefficients:

n

[27% . [+
g g Y B e g

E]

) .
VB e B
=

dad D1 fmd P
7
gz = 0;
dowd  Or, ;
‘ ' (3.14)
‘- o & a w4
E % Bat =0; L3 22 = 0; ’h ygiéO; .
i O dand O, = P
I
h
2 P =0

We note that with consideration of Eqgs. (2.3) and (2.5), within Eq. (3.13) the expressions for determina~
tion of diffusion flows J‘{{ are differential equations, Because of their complexity they will not be reproduced

here,

If all mixture components have an identical temperature T, then the results obtained in this section are
greatly simplified. In this case the equation for change in total energy has the form ‘

d®s Iy I R P SR
Jieus = e F > ] s s st i \ & o, .
20 21: 1ys v [F -5 ;} 5 (m+ 2 X )]+ (3.15)

where

Pr nPy O
_ (3.16)
1 ] Qp0n ) [ GPs ) d®y
= — it £ R = e

* T { (fk ) a0y f ( APy dt

S/ @o; Y, ; a '
f— 2 '&6!# + hpl ) (V“i)P»T —_— (vh - kpu 0") Vﬂ } .

nfr 2Dy

i=1

In the case where the terms Rf{ and V- JakJﬁ/pk may be neglected, we obtain the following equations for
determination of heat flux, diffusion flows, and viscosity fensor:
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Depending on the choice of the normalized weight s%lsbem ax, we obtain different equations for determina-
tion of heat flux and diffusion flows from Eq. (3.17), IfD a)Jak/Dt can be neglected and it is possible to take
ay = ¢k, we then obtain the classical results [1, 2].
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