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G E N E R A L I Z E D  D I F F U S I O N  

H O M O G E N E O U S  M I X T U R E S  

N g u y e n  V a n  D i e n  

THEORYOF M U L T I T E  MPERATURE 

UDC 532.529:5 

A generalized diffusion theory is constructed for motion of homogeneous mixtures consisting 
of components at different temperatures.  

The theory of motion of mutually penetrable media, e.g. ,  the motion of various materials  and phases 
with consideration of phase transit ions,  chemical reactions,  heat t ransfer ,  and radiation; the motion of liquids 
and gases with various part icles;  and the motion of liquids and gases in soils, is important in solution of numer- 
ous practical  problems, in part icular ,  those related to chemical production, hydroenergetics ,  hydromeliora-  
tion, and the development of the petroleum and gas industry. 

There  exist various approaches to the problem of study of the complex motion and varied processes  in 
interpenetrating media. One of these is diffusion theory. 

We construct below a generalized diffusion theory of motion of multitemperature homogeneous mixtures. 
In contrast to classical diffusion theory [1-4] here we introduce a certain general character is t ic  velocity of the 
mixture as a whole, and diffusion flows are defined relative to this velocity. Using general integral laws of the 
mechanics of mixtures ,  a new system of equations is obtained for determination of the unknown values, gener-  
alizing Prigogine's theorem [2, 3]. This system permits  transforming from one character is t ic  velocity to 
another in the general case of motion of different- temperature homogeneous mixtures. It is shown that with 
consideration of the contribution of diffusion flows to the energy of the total mixture the equations for de ter -  
mination of the diffusion flows are differential, and not algebraic, equations. The equations for change in 
component concentration are of the hyperbolic type, not parabolic, as in classical theory,  i .e . ,  generalized 
diffusion laws are obtained, as were proposed in [5, 6] in analogy to the rheology of viscoelastic media. 

1. Basic Integral Laws of the Mechanics of Mixtures. We will consider the motion of mixtures consist- . 
ing of n components. We will assume that all these components fill one and the same volume, occupied by the 
mixture. Let Pk, Uk be the density and velocity of the k-th component. It is known that in the theory of homo- 
geneous mixtures,  together with the density Pk it is necessary to consider other quantities characterizing the 
inertness of each component. These quantities are  Mk, the molar mass; Vk, the molar partial volume; and 
Nk, the number of moles of the k-th component per unit volume of mixture. 

Let ua be some character is t ic  velocity of the mixture. We will assume that ua may be expressed as a 
l inear combination of u k with the aid of some system of normalizing weights ak, i . e . ,  

n n 

uo = = , .  (1.1) 
k=l k=! 

where ak may depend only on Ok, Mk, Nk and V k. 

The motion of the k-th component relative to an observer  moving with a velocity u a is determined with 
the aid of a generalized diffusion current  ~k, equal to 

n 

--= p,~(u,~ u~); ' ~ ,  a,~ ~ = o. 0 . 2 )  

, , ,  ,,,,,, . . . . . . .  
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In o rde r  to obtain equations for  the determinat ion of u a, ~k and other  mixture  p a r a m e t e r s  it  is n e c e s s a r y  to 
postulate laws for  the mechanics  of continuous media.  In in tegral  f o r m  these appear  as  

d ~ (y_,,,Id,,+ fo. 
h I V ~ / 8 

p~r = -7;- , :  o~,~ dV+ r p~.~.~ d S -  : nf~dV ~.edS; 

k = l  V - -  S = S 

~ (rk XPkUk) dV = ra X phfhdV r • aS; 

' V 
(1.3) 

d 
dt ,I 2 1 ~ f~ ' )dV= 0 

V k = l  " V - h ' ~ ' l  " "~ ' 

s ~ I  - ' / " v ~ h l  

S S 

In Eq. (1.3) n is the unit vec to r  along the externaI  normal  of the surface  S; dV and dS a re  the e l e m e n t s  of 
the volume V and the surrounding surface  S; fk, the density of the ex te rna l  force  acting 0n the k- th  continuum; 
P ,  the s t r e s s  tensor ;  r k, the radius of the center  of mass  of the k-th continuum located within the e lement  dV; 
r ,  the rad ins  of the center  of mass  of the mix ture  as a whole (at a given moment  of t ime t it is assumed that 
r k = r) ;  e is the internal  energy of a un i t  mass  of mixture ;  R~ are  second range tensors  defining additional 
surface  in teract ions  in the mixture ;  h*, the intensity of a heat  source;  q,  the t h e r m a l f l u x ;  the oPerat ion 8 ~ t  
( . . . )  indicates par t ia l  different iat ion with r e sp ec t  to t ime;  V, the der ivat ive  along the coord ina te ;  ~ indicates 
the sca la r  product;  • ind ica tes  the c ross  product  of adjacent indices of the  t ensor  quanti t ies.  Moreover~ i t ! s  
assumed in Eq. (1.3) that the s t r e s s  tensor  P opera tes  only on the general  cha rac t e r i s t i c  veloci ty  of the mix-  
ture  Ua, while the  tensors  R~ opera te  on the re la t ive  veloci t ies  of the continua. 

2. Basic  Differential  Equat ions of Mixture Motion. We will employ  the defining equations (1.1) and {1.2) 
to t r ans fo rm Eq. (1.3) to the following different ial  fo rm:  

Opk a i . ' ~  
Ot -1- V..(p~u~) = --V.dtc,.-vm;~. ~ mt~=O; 

+ v-(P-u,,) -.--: J~ ~ p,~ = p t  =~ ~pdk; 
Ot 

/ r  �9 , k = t  k = l  , 

�9 tl t l  

P d('O u ,~  = p / _  V" p - ~ -  Pk / ctt "-- +V" (2.'t) 

- -  a 8 ~  
O dt = P h * - - v ' q - t -  -oi, ,1--s . ,  : h - - V  ..- '  

k 

d ( ~ ) u ~  Q--~ + P . . v u , ~ +  R~"V oh dt Ph 

In Eq. (2.1) m k indicates the change in mass  of t h e  k-th continuum due to physicochemical  t r ans format ions ;  
pA,  the an t i symmet r i c  port ion of the s t r e s s  tensor ;  the operat ion ( . . )  denotes convolution over  all  two in-  
d i ce s ;  d(a)/dt, t h e  Complete t ime der iva t ive ;  D(a)/Dt, a der ivat ive  defining.the change in t im e  with r e s p e c t  to 
a general ized Lagrangian Coordinate sys t em moving and deforming w i t h a  veloci ty  u a [7], these  der iva t ives  
having the fo rm 
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d(a) 0 
- - ( . , . )  = (. �9 .) + (u~.V) ( . . . ) ;  dt Ot 

D ( a )  d~a) _ _  ( . . . )  - 
Dt dt 

= - -  ( . - - )  + [ ( - . . ) - v l  u,, + ( . . . ) ( v ' u o ) .  

Moreove r ,  in Eq. (2.1) the new quanti t ies  Q~ were  introduced,  defined in the following manner :  

D'a' J~ ( l'h ,Ja ) 
Ot + Q~+V" R~ -~k , ' 

I t  is e a sy  to demons t r a t e  that  if we a s s u m e  

then Q~ mus t  sa t i s fy  the re la t ionship  

ak 

_ lab 

(2.2) 

(2.3) 

R~ = O, (2.4) 

(2.5) 

We note that  Eqs.  (2.1) and (2.3) a re  exact  equations for  de te rmina t ion  of the change in continuum den-  
si ty,  c h a r a c t e r i s t i c  veloci ty  ua, in ternal  energy  e, and diffusion flows ~k. They coincide with the well-known 
equations of c lass ica l  diffusion theory [1-2] if we choose as the cha r ac t e r i s t i c  genera l  veloci ty  the mean m a s s  
ve loc i ty ,  and the t e r m s  D(a)Jak/Dt, 7 J~Jak/p k and tR~ can be neglected.  Toge the r  with specifying the concrete  
f o r m  of the internal  energy  and the diss ipat ion function, these equations can s e rve  as a basis  for  descr ip t ion  
of the motion of var ious  mutual ly  penet ra t ing  med ia ,  not only homogeneous and he terogeneous  m i x t u r e s ,  5ut 
a lso  liquids and gases  in soil  and rock.  

In the theory  of homogeneous mix tu re s  one of the following cha rac t e r i s t i c  ve loc i t ies  is often employed:  
mean  m a s s ,  m o l a r ,  vo lume,  or  the veloci ty  of one of the components .  The advantages  of each of these were  
d i scussed  in [3, 10]. To desc r ibe  the general  motion of he terogeneous  mix tu res  the mean  m a s s ,  or  mean  
volume veloci ty ,  o r  s imply  the veloci ty  of the c a r r i e r  phase  is used. The theory of dr i f t  flow, based on use  
of the mean volume veloci ty  of the mix tu re ,  is often found in s tudies of many types of flows in g a s - l i q u i d  s y s -  
t e m s ,  and a lso  in the flows of suspens ions  of solid pa r t i c l e s  in liquids of the fluidized type [8]. Use of the 
mean volume veloci ty  is stil l  m o r e  convenient if the true densi t ies  of the phases  a re  constant ,  since in this 
case its d ivergence is equal to ze ro ,  while at the same  t ime the other  cha r ac t e r i s t i c  veloci t ies  do not con-  
f o r m  to this impor tant  ma themat i ca l  l imitat ion.  Moreove r ,  with the aid of the mean  volume veloci ty the coef-  
f icient  of effect ive mix ture  v i scos i ty  may  be calculated f r o m  the phase v iscos i ty  coefficients  and the volume 
concentrat ion of the d i sc re te  phases  [9]. 

We note that  the d i f ferent ia l  equations (2.3) for  de te rmina t ion  of the diffusion flows J~  contain not only the 
c lass ica l  F i ck  diffusion law, the laws of thermodif fus ion ,  barodiffusion,  sedimenta t ion,  and Darcy  f i l t ra t ion,  
but a lso  their  genera l iza t ions  with t ime re laxa t ion ,  as p roposed  in [5, 6] in analogy to the rheology of v i s c o -  
e las t i c  media .  Moreove r ,  the p r e sence  of the t e r m s  D(a)Jak/Dt in the equations for  the de terminat ion  of u G 

p e r m i t  a descr ip t ion  of other  t ime effects  (creep,  s t r e s s  relaxation) in in te rpenet ra t ing  media .  

3. Genera l ized  Diffusion Theory  of D i f f e r e n t - T e m p e r a t u r e  Homogeneous Mixtures .  Le t  there  be a homo-  
geneous mix tu re  consis t ing of n components  with d i f fer ing t e m p e r a t u r e s  T k. F o r  s impl ic i ty  the absence of 
chemical  reac t ions  will be assumed.  We will a s s u m e  that e is the internal  energy  of a unit m a s s  of mix tu re ,  

e = e (p, ch, s~); ch = Ph/P, (3.1) 

where  s k is the entropy of the k-th component  pe r  unit m a s s  of mixture .  

Aside f r o m  e we introduce other  the rmodynamic  functions of the mul t i t empera tu re  mix ture :  F ,  f r ee  
ene rgy ;  h, enthalpy; q, t he rmodynamic  potential .  These  a re  re la ted  to each other  as follows [1]: 

n 

F = s - -  "~ Task = F (p, ca, T~); 
k = l  
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h = 8 +  2_ =h(p ,  ck, ~ s~); 
P 

. (3.2) 
= ~- -  T~s~ + 2_ = ~ (p, ck, Tk). 

_ 9 

In Eq. (3.2) p is the p r e s s u r e  of the mix ture ;  p,  t o t a l  deasi ty ;  c k, m a s s  concentrat ion of the k- th  compo-  
nent. F r o m  Eq. (3.2) it is s imple  to obtain 

Oe OF 03 OF Oh OT 
P - - - - P ~ - -  P ~ - - ;  ~k . . . . . . . .  ; Op Op Ock 0c~ Oct, Oc~ 

a 8  Oh OF a T  1 Oh a w  , ( 3 . 3 )  
- ; . . . . . .  ; . . . . .  

Tk = as~, as~, s~, aTu ~OT~ p ap ap 

where /~k is the chemica l  potent ial  of the k-th component.  

We a s s u m e  that  for  m u l t i t em pe ra t u r e  homogeneous mix tu re s  al l  the the rmodynamic  functions a r e  homo-  
geneous in the f i r s t  power  of the functions in m a s s ,  i . e . ,  they may  be r ep re sen t ed  in the f o r m  

~F = s ckla~. (3.4) 
h=l  

It  is s imple  to demons t r a t e  that  f r o m  Eqs.  (3.2)-(3.4) there  follow a genera l ized Gibbs the rmodynamic  
equation and additional re la t ionships :  

~-~ck (V~h)p,r h = O; = va; sa = --ch 
~=, op 

where  Vk is the spec i f ic  par t i a l  volume of the k- th  component.  

With considera t ion  of Eq. (3.5) f r o m  the las t  equation of (2.1) we obtain 

afta 

OTa 

n 

s 2 { + ~kv .g ,+  fk. s  ~ p~ -- 

-- '~, g .  (T~vsk I-- skvT~,) + ,~..eo + R~.- V -J~ 

(3.5) 

(3.6) 

In Eq. (3.6) T a is the viscous  s t r e s s  t ensor  and ea is the deformat ion  veloci ty  t ensor .  These  t en so r s  
have the f o r m  

1 
T a = pl + .P; e~ = ~- [(VUa) + (Van) r ]. (3.7) 

Equation (3.6) st i l l  does not p e r m i t  a desc r ip t ion  of the second law of the the rmodynamics  of i r r e v e r s i b l e  
p r o c e s s e s ,  s ince it is fo rmula ted  only for  the en t ropy of the mix tu re  as a whole. To achieve this descr ip t ion  
we will a s sume  that f rom Eq. {3.6} we may  postula te  the following equations for  change in en t ropy Sk of each 
component:  

d(a)sk ~ a h~ 1 
P ~ q- J~'vsh = Pk "Th Tk v'q~ + --L--1 - 

t~ l  Tk 
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n 
_}_ i_i__ j~. [~ dta)u~ Qg J~.sk vT~ 1 J~ X~ (3.8) 

T~ dt Oh ~ + - ~  R~"V Oh Th 
i = !  

In Eq. (3.8)the new quantit ies:  h~, a heat source;  qk, the thermal  flux toward the k-th component; and X k, 
an additional t e r m  appearing as a resu l t  of division of general  equation(3.6),  were  introduced. These  quanti-  
t ies must  sat isfy the following conditions: 

n n fl 

2 ph/z; __ ph; 2 q l = q ;  2 X k = x . . e ~ "  .(3.9) 
k = l  k.~-I k = t  

form 
After  summation of Eq. (3.8) we obtain an equation for  the change in entropy of the mixture  s. 

P -7i-- + - v .  k=t = Ttt h=l 

It has the 

(3.],0) 

where  ~ is an express ion  for  the entropy production of the mixture  as a whole,  sat isfying the inequality 
/ t - - [  n 

~=, TnT~ ' qk - -  J~ c~, -~ 

n--l ( 3 . 11 )  

,=, " -:TTg q- Jg.  d~--~phTk ~ + ~ % . . e ~ §  = ~ R ~ . . V  Ph-- ' 

where  
n - - I  

d~, = ( fh ahpjn i 6hi + ahPi 

(3.12) 
n ~ l  

[ ak Z (  8,,, aw, ') ] --i ' aw" ) d(~ 
vi VP ~ Tn a~phTn dt a ~ T ~  + -~[ ' anp~T, 

In Eqs. (3.10)-(3.12) the quantity F denotes f ree  energy of the mixture;  hk, enthalpy; and Vk, the specif ic  p a r -  
t ial  volume of the k-th component. 

Inequality (3.11) r ep re sen t s  a general izat ion of Pr igogine ' s  theorem [2, 3] for  the general  case of motion 
of homogeneous mul t i t empera tu re  mixtures .  It will se rve  as a basis for  the construct ion of definitive r e l a -  
t ionships.  

The l inear  definitive relat ionships sat isfying Cur ie ' s  pr inciple  and Onsager ' s  r ec ip roc i ty  relat ionships 
[2] have the fo rm 

- C k  4 = 1  

n n- - I  ( )} 
, = -  .I, T-T+ ' a 0,r. 

i = l  i = l  
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x~ (v.u~) I + 2t~ 
�9 o = , t o  -yV~o  - 

n--I n 

_ ~ T : , :  : +  W-~ v ' y  
I 

; +  ~ 1 ~ 7 : ~  v J~ 1 ~ ; 

n ? t  

R~ = ~ ~ i J~ -~ - -  . t + ~Tg 

n 

T , ~ -  T~ 1; 
T~,T~ 

(3.13) 

= - %~, ~ - - - ~  ; 1~ , I ~  - ~" ~ ~ - p , ~  . - P ~ ,  P~ ,=P,~ .  

Moreover ,  conditions (1.2) and (2.4) impose the following additional l imitations on the phenomenologieaI 
coefficients: 

~ , : .=o ;  ~'~ ~ p~ =o;  - - L - ~  =o;  

'~--~ ~ = o; 
P~ 

' *n n n 

akpg vka~t = 0 ;  Pk vk = 0; ~?a~p~ = 0 ;  

(3.14) 

n 

a~ aa = 0. 
Pk h~ 

We note that with consideration of Eqs. (2.3) and (2.5), within Eq. (3.13) the express ions  for  de te rmina-  
tion of diffusion flows ~ k a r e  differential  equatiofis. Because of their  complexity they will not be.reproduced 
here.  

If all  mixture components have an  identical temperature  T ,  then the resul ts  obtained in this sect ion are 
greatly simplified~ In this Case the equation for change in total energy has the form 

P ' - - ~  + S~'VS = P T "V" q 1 'q p r ~ J~ + ~- - w~ +,~, (3.15) 

where 

0 ~ = - -  q +  A 8  . ~ +  Sl d ? , -  

( ) } 
-= a.ph ] aapk 

(3.16) 

a 
In the case where the t e rms  R k and V- JakJ~/p k may be neglected, we obtain the following equations for  

determinat ion of heat  flux, diffusion flows, and viscosi ty tensor:  
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n n - - I  n - - I  n 

4=I k ~ l  i ~ l  

__ n-l  (,.64~ _}_ akaip____n ) D '~) J~ ] . 

~=~ \ P4 pkp~a~ Dt J '  

- - = -  Be5 J?+ ~ ' 7 - Z  ~ h4 a4p. h. 
Dt i=t h=l �9 a~P4 . 

-- aa a4p,___!~ j a  ~ Pi 

T (V'U~) 1 e~. 

Depending on the choice of the normalized weight system ak, we obtain different equations for determina- 
tion of heat flux and diffusion flows from Eq. (3.17). If D~a)jalCtDt can be neglected and it is possible to take 
ak = Ck, we then obtain the classical results [1, 2]. 
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